GHG Emission and Energy Transformation in Nepal

-Dr. Suresh Kumar Dhungel (<u>skdhungel@hotmail.com</u> -Dr. Iswor Bajracharya (<u>iswor1@hotmail.com</u>)

Faculty of Technology Nepal Academy of Science and Technology -Mr. Nawaraj Sanjel (<u>sanjelnawaraj@ku.edu.np</u>)

EnergizeNepal Project School of Engineering Kathmandu University

Outline

Introduction to Nepal

Energy Status in General

Green House Gas Reduction

Renewable Energy Development

Existing Hurdles Future Prospects

Introduction to Nepal

- Energy Status in General
- Green House Gas Reduction
- Renewable Energy Development
- Existing Hurdles and Future Prospects

Introduction to Nepal

Area=147,181 Sq. km. Length -885 km Width~145-241 km Elevation~70-8848 m Capital City - Kathmandu 93rd Largest in land mass 41st Most populous Landlocked (India & China)

Political Division of Nepal

Physiographic Division of Nepal

Physiographic Zones of Nepal

Physiographic	Elevation	Area	Area	Climate	
Zones	(m) asl	(x1000 ha)	(%)		
Terai	< 500	2,111	14	Hot Monsoon &	
				Tropical	
Siwalik Hills	500-1000	1,886	13	Hot Monsoon &	
				Tropical	
Middle Hills	1000-3000	4,443	30	Warm/Cool	
				Temperate Monsoon	
High	3000-5000	2,959	20	Sub-Alpine &	
Mountain				Alpine	
High Himal	> 5000	3,350	23	Tundra Type &	
				Arctic	

- Per capita GDP ~ US\$ 1000
- Total population ~ 30 Millions
- Population density ~ 200 persons/Sq. km
- Poverty is widespread with about 25% of the population living below the prescribed poverty line.

Special Features of Nepal

- Himalayas Water tower of Asia, lifeline for ~ 1.3 billion people
- 8 out of 10 highest peaks of world including Mount Everest
- Birthplace of Lord Buddha
- Unique Shape of Flag in the world
- Never Colonized in History
- 4 Global biodiversity hotpots
- 60 eco-regions
- 27 wetland sites
- 488 protected areas
- 13 UNESCO heritage sites
- 1,000 living languages

Flag

Emblem

Natural resources of the Himalayas at an imminent risk of degradation from climate change impacts

Introduction to Nepal

Energy Status in General

Green House Gas Reduction

Renewable Energy Development

Existing Hurdles and Future Prospects

Energy Mix Scenario

Changing Energy Mix Scenario

Sectoral Energy Consumption

Energy Mix from Different Sources

SN	Fuel Types	Share (%)
1	Fuel Wood	70.47
2	Agriculture residue	3.48
3	Animal Dung	3.68
4	Coal	3.97
5	Petroleum	12.53
6	Electricity	3.39
7	Renewables	2.89

National Scenario of Electrical Power

- Total installed capacity~ 1000 MW (Hydro)
 Thermal Power ~ 50 MW
- Accumulated Solar PV Systems~ 40 MW
- Under Construction~ 3100 MW (Hydro)
- Access to grid electricity~ 70%
- Planned Hydropower Projects: 10,000 MW
- Installed Wind Power : Negligible
- **Biomass Power: None**

Available Energy & Peak Demand

Particulars	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017*
Peak Demand (MW)	721.73	812.50	885.28	946.10	1,026.65	1,094.62	1,200.98	1,291.10	1,385.30	1,444.10
NEA Hydor Generation	1,793.14	1,839.53	2,108.65	2,122.08	2,357.43	2,273.11	2,288.23	2,366.88	2,133.14	2,305.17
NEA Thermal Generation	9.17	9.06	13.01	3.40	1.56	18.85	9.65	1.24	0.08	0.28
NEA Generation Total (GWh)	1,802.31	1,848.59	2,121.66	2,125.48	2,358.99	2,291.96	2,297.88	2,368.12	2,133.22	2,305.45
Power Purchase from India	425.22	356.46	638.68	694.05	746.07	790.14	1,318.75	1,369.89	1,777.68	2,175.04
Power Purchase from IPPs	958.42	925.74	591.43	1,038.84	1,073.57	1,175.98	1,070.47	1,268.93	1,166.24	1,777.24
Power Purchase Total (GWh)	1,383.64	1,282.20	1,230.11	1,732.89	1,819.64	1,966.12	2,389.21	2,638.82	2,943.92	3,952.28
Available Energy (GWh)	3,185.95	3,130.79	3,351.77	3,858.37	4,178.63	4,258.08	4,687.09	5,005.70	5,077.14	6,257.73

Note :- Peak demand is for all areas covered by integrated system including supply to India * Provisional figures

Introduction to Nepal

Energy Status in General

Green House Gas Reduction

Renewable Energy Development

Existing Hurdles and Future Prospects

Existing Global Crises

GHG Emission and Energy Transformation Seminar- 2017, Hangzhou, PRC

18

Why GHG Reduction Necessary?

Net GHG Emission at Different Times

Year	CO ₂ (Gg)	CH ₄ (Gg)	N ₂ O (Gg)	Net CO ₂ Eq. Emission (Gg)
1990/1991	912.96	1005.82	1.39	26472.68
1994/1995	9747.00	948.00	31.00	42685.00
2000/2001	-9882.14	667.53	30.55	15912.99

- Increase in temperature at an annual rate of 0.06°C in average
- Himalayas Warming/ Century > the global average of 0.74 °C (Du et al. 2004; IPCC 2007).
- □ Glaciers retreating at a faster rate than before (30-60 meter between 1970-1989).
- Higher temperature increment for winter compared to the monsoon season
- **Higher Altitude higher rate of temp. rise**

Areas of Concern due to Climate Change

Although emits only 0.025 percent of total GHG emissions in the world Nepal is 4th vulnerable country in the world due to climate change.

Agriculture & Food SecurityPublic Health

- **Water Resources & Energy Security**
- **Generation Content** Forest and Biodiversity
- Infrastructures and Urban Settlement
- **Climate Induced Disasters**

Source: NAPA Report, 2010

Initiatives for Adaptation

- **NAPA, 2010- Strategic Tool**
- **250** adaptation options
- **Thematic Working Groups (TWG), nine integrated projects** prioritized
- **LAPA Framework**, 2011 to integrate adaptation and resilience
- □Agriculture, forestry, health, water and sanitation, watersheds and micro-finance -main entry points
- Education, local infrastructure, disasters and other environmentrelated areas may also be taken as entry points
- In 2013, LAPA implemented in 69 VDCs and 1 municipality of 14 districts

GHG Reduction Practices-1

Photo courtesy: AEPC, BSP-Nepal and Bajra Foundation, Nepal

GHG Reduction Practices-2

GHG Reduction Practices-3

- □ Forest coverage- 44.74% of the entire area, increasing
- **Promotion of RETs**
- Planned to Implement Mass Transport System

Introduction to Nepal

Energy Status in General

Green House Gas Reduction

Renewable Energy Development

Existing Hurdles and Future Prospects

Possible Solution

Potential Energy Generating Sectors

Hydropower- 83,000 MW 106 years of history

Solar Photovoltaics- 4.7 kWh / m²/ day, ~ 300 days of sunshine ~ 40 years of history

Wind Mills -3.387 MWh / m² (annual average)

~ 20+ years of history

Potential of Solar Power Development

Source: Solar and Wind Energy Resource Assessment in Nepal (SWERA),2008

Potential of Wind Power Development

Source: Solar and Wind Energy Resource Assessment in Nepal (SWERA),2008

Potential of Hydro Power Development

No. of rivers: more than 600 Estimated storage potential: 88 billion cu.m. Theoretical potential: 83,000 MW Technically and Economically potential: 43,000 MW

Source: NEA

Trend of ICS Installation

Trend of Solar PV System Installation

Regional Installation of IWM

Irend of Micro Hydro Plant Installation

Trend of Biogas Plant Installation

Accumulated Values of Off-Grid RETs

SN	Accumulated Off-Grid Installation	Total
1	Improved Cook Stoves (ICS)	1,269,424
2	Improved Water Mills (IWM)	10,036
3	Solar PV installations	609,793
4	Micro-Hydro installations (kw)	54,275
5	Bio-Gas Plant Installations	349,591

Responsible Organizations

Role	Level	Organization	Remarks
Policy Formulation and Evaluation	National	Ministries (Energy, P& Env, S&T,), WECS	Other Ministries
Implementation (National)	National	NEA, AEPC, DoED	
Research	National	NAST, Universities	R&D Inst.
Development	All	NEA, Private, Donors (National & Int'l)	Changing
Monitoring and Evaluation	National	NPC	
Implementation (Local)	Province & Local	Provincial & Local Governments, Community Groups	Recently Formed
Investment	National & Local	Government, Public, Private, Int'l Agencies	Banks

Policy Document for Hydropower

- **1990-** hydropower development was under the domain of government utility
- 1992- hydropower development was opened for private sector
- **1992, 2001 Hydropower Development Policies**
- 1992-Water Resources Act 1992
- **1992-** Electricity Act (Under Review-2017)
- 1992-Foreign Investment and Technology Transfer Act
- **1996-Environment Protection Act 1996 (Regulation-1997)**
- 2002-Water Resources Strategy
- 2005- National Water Plan
- **2006-Rural Energy Policy**
- **2008-National Electricity Crisis Resolution Action Plan**
- □ Nepal Government's policy and plan of 10,000 MW in 10 years (2010-2020) and 25,000 MW in 20 years (2010-2030)

Hydropower

Headworks of Kaligandaki 'A' HPS

Glimpse of Hydropower Sites

Upstream reservoir of Middle Marsyangdi HPS

Major RE Projects

- 25 MW Grid Connected Solar PV Plant
 Solar Street Lamps in All Municipalities of Nepal
- Implementation of Grid Connected Solar PV Systems with Net Metering
- Many Small and Big Hydropower Projects in Pipeline

- Chameliya (30 MW)
- □ Kulekhani -3 (14 MW)
- Upper Trishuli- 3A (60 MW)
- Upper Trishuli-3B (37 MW)
- Rahughat (40 MW)
- Upper Tamakoshi (456 MW)

Major Hydropower Projects in Pipeline

- Tanahu (140 MW)
- Rasuwagadi (111 MW)
- 🖵 Sanjen (42.5 MW)
- Upper Sanjen (14.6 MW)
- Middle Bhotekoshi (102 MW)
- Upper Arun (335 MW)
- Upper Modi (42 MW)
- Tamakoshi V (95 MW)
- Chainpur Seti (210 MW)
- Dudhkoshi Storage (300 MW)
- Tamor Storage (762 MW)
- Uttar Ganga Storage (828 MW)
- Andikhola Storage (180 MW)
- Upper Seti (127 MW)
- Nalsyaughat (400 MW)
- Budhi Gandaki Storage (1200 MW)
- Pancheshwor (6,720 MW)

Run – off - River

Storage

□ Karnali Chisapani (10,800 MW)

Kaligandaki II (660 MW)

West Seti (700 MW)

Dudh Koshi (300 MW)

Aandhi Khola (180 MW)

- Arun III (402 MW)
- Tamor / Mewa (100 MW)
- Budhi Ganga (20 MW)
- Likhu 4 (51 MW)
- Upper Modi A (42 MW)

Khimti II (27 MW)

- Upper Marshyangdi A (121 MW) Langtang Khola (218 MW)
- □ Kabeli A (30 MW) □ Kankai (60 MW)
 - Madi Ishaneshow (86 MW)

Introduction to Nepal

- Energy Status in General
- Green House Gas Reduction
- Renewable Energy Development

Existing Hurdles and Future Prospects

- Hydropower Political Instability, Policy Barrier, Slow Implementation, Lack of Transmission Line, Difficulty in Land Acquisition, Resource Constraints, Poor Infrastructure
- Solar High installation cost, No Power cuts, Technical & Financial Constraints
- □ Wind- Difficult Terrain, Poor Infrastructure, Bad Experiences in the past
- Bioenergy- Less Competitive compared to other resources

Way Forward- Let's do it.

Confucius (551–479 BC)

Thank you all. Very special thanks to organizers, HRC and other supporting agencies of PRC.

